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• Inverse Protein Folding
• Design protein sequence that folds into a given 3D structure 
• Fundamental challenge in bioengineering and drug discovery
• 8 of the top 10 best-selling drugs are engineered proteins

• Current Approaches
• Traditionally, optimize sequences to achieve specific structures 
    and functions 
• Recent deep generative models learn to translate structure into sequence
• However, often lack in producing diverse, functional sequences

• AlphaFold
• Forward folding model
• Accurately estimates structure from sequence, provides confidence metrics 
     (pLDDT, pTM)
• However, very slow

• Our Work 
• Merge inverse with forward folding to provide feedback on generated 

sequence
• Proposed method: AlphaFold Distll (AFDistill)

• Fast, end-to-end differentiable 
• Trained on AlphaFold-generated data [ sequence -->  TM/LDDT score ]
• Use as part of optimization loop in the Inverse Folding Design
• More generally, can be used in any protein optimization algorithm
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AlphaFold Distilllation

• Data
• Sourced from AlphaFold Database Release 3  (900K+ ) and 4 (214M+) 
• Created multiple balanced datasets for more representative training

• Model
• Adapted ProtBert, a BERT-based Transformer with 420M parameters
• Adjusted ProtBert head to classify protein residue states in 50 discrete bins
• Estimates pTM/pLDDT scores per protein sequence

• Results
• Eval shows high accuracy with true vs. predicted scores clustering on the 

diagonal
• Kernel density plots demonstrate model reliability in predicting protein 

structures
• Orders of magnitude faster than existing methods

Inverse Protein Folding

• Overview
• Use AFDistill as a Structure Consistency (SC) score in inverse protein folding
• Evaluate protein sequence recovery, diversity, perplexity, and TM-score
• CATH 4.2 dataset

• GVP
• GVP+SC  improves diversity without compromising TM scores
• SC regularization induces diversity by allowing multiple high-score sequence 

candidates
• Candidate protein sequences with high pTM/pLDDT drive both recovery and 

diversity

• ProteinMPNN
• ProteinMPNN benefits from SC regularization, sustaining high recovery rates.
• SC regularization enhances sequence diversity better than backbone noise 

alone

• PiFold
• PiFold’s performance improved by SC regularization without sacrificing 

recovery rates
• SC regularization introduces significant diversity in generated protein 

sequences

Figure 4: Results for GVP with SC regularization are displayed against various AFDistill datasets
on the x-axis. The left y-axis presents sequence metrics, and the right y-axis structure metrics
(TM and SC scores). Blue and orange bars denote recovery and diversity gains over the GVP
baseline (38.6 recovery, 15.1 diversity, 0.79 TM). Olive and purple bars show predicted SC and
TM test scores, while the dashed cyan bar indicates the baseline GVP TM score. TM 42K and TM
augmented 86K AFDistill models offer the best performance, highlighting high diversity and notable
sequence/structure recovery improvements.

where LCE =
PN

1 LCE(si, ŝi) is the CE loss, si is the ground truth and ŝi is the generated protein
sequence, LSC =

PN
i=1(1 � SC(ŝi)) is the structure consistency loss, N the number of training

sequences, and ↵ is the weighting scalar for the SC loss, in our experiment it is set to 1. To evaluate
performance, we use the standard metrics such as recovery, diversity, perplexity and TM-score.

3.1 Results

We present experimental results for several recently proposed deep generative models for protein
sequence design accounting for 3D structural constraints. For the inverse folding tasks we use
CATH 4.2 dataset, curated by [15]. The training, validation, and test sets have 18204, 608, and 1120
structures, respectively.

GVP Geometric Vector Perceptron GNNs (GVP) [17] is the inverse folding model, that for a given
target backbone structure, represented as a graph over the residues, replaces dense layers in a GNN by
simpler layers, called GVP layers, directly leveraging both scalar and geometric features. This allows
for the embedding of geometric information at nodes and edges without reducing such information to
scalars that may not fully capture complex geometry. The results of augmenting GVP training with
SC score regularization are shown in Fig. 4.

Baseline GVP without regularization achieves 38.6 in recovery, 15.1 in diversity, and 0.79 in TM score
on the test set. Employing SC regularization leads to consistent improvements in sequence recovery
(1-3%) and significant diversity gain (up to 45%) while maintaining high TM scores. pTM-based SC
scores show a better overall influence on performance compared to pLDDT-based ones. It’s important
to note that AFDistill’s validation performance on distillation data doesn’t always reflect downstream
application performance. For example, TM augmented 86K outperforms TM 42K, despite having
slightly worse validation CE loss. This suggests that augmented models may enable more generalized
sequence-structure learning and provide a greater performance boost for inverse folding models.

Table 1: Evaluation results of ProteinMPNN trained with and without SC regularization (AFDistill
trained on TM aug 86K dataset). The values in parenthesis show gain on test set of using SC-
regularized training as compared to original training.

Recovery Diversity Perplexity

ProteinMPNN ProteinMPNN
+SC ProteinMPNN ProteinMPNN

+SC ProteinMPNN ProteinMPNN
+SC

Backbone Noise 0.02 47.7 47.5 (-0.4%) 22.5 24.3 (+8.0%) 5.1 5.1 (+0.0%)
Backbone Noise 0.1 43.8 44.0 (+0.5%) 28.1 30.4 (+8.2%) 5.3 5.4 (+1.9%)
Backbone Noise 0.2 39.5 39.9 (+1.0%) 31.3 34.4 (+9.9%) 5.8 5.8 (+0.0%)
Backbone Noise 0.3 36.3 36.4 (+0.0%) 33.0 37.8 (+14.6%) 6.2 6.3 (+1.6%)

Note on sequence diversity In Section F of Appendix we offer a set of experiments to shed some
light on why SC regularization leads to improved sequence diversity. In particular in Fig.9 we show
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Table 2: Experiments on PiFold comparing the performance metrics on the test set of CATH 4.2 for
different model variants (original vs SC-regularized training based on different AFDistill models)
using greedy and sampled decoding strategies. The values in parentheses represent the percentage
change with respect to the original PiFold model.

Original TM 42K TM aug 86K TM synth 1M LDDT 42K pLDDT 1M pLDDT bal 60M
Rec Perp Rec Perp Rec Perp Rec Perp Rec Perp Rec Perp Rec Perp

Greedy 51.1 4.8 50.9 5.0 51.0 4.8 50.5 5.2 50.8 4.9 50.9 4.8 51.1 4.7
(-0.4%) (+4.0%) (-0.2%) (+0.0%) (-1.2%) (+8.3%) (-0.6%) (+2.1%) (-0.4%) (+0.0%) (+0.0%) (-2.1%)

Rec Div Rec Div Rec Div Rec Div Rec Div Rec Div Rec Div
Sampled 42.6 52.4 42.5 60.7 42.8 60.2 42.4 61.1 42.3 60.9 42.5 60.5 42.9 60.0

(-0.2%) (+15.8%) (+0.5%) (+14.9%) (-0.5%) (+16.6%) (-0.7%) (+16.2%) (-0.2%) (+15.5%) (+0.7%) (+14.5%)

that the main source of diversity is in the limited guidance from AFDistill about the specific sequence
to generate to match a given 3D structure, since it does not have access to the structural information,
allowing many relevant sequences with high pTM/pLDDT to be considered as good candidates.
AFDistill regularization during training injects candidate sequences which have high pTM/pLDDT
scores, therefore likely matching the input structure better, thus ensuring high recovery rate. At the
same time these sequences differ from the ground truth, thus promoting diversity (see Section F for
more details).

ProteinMPNN ProteinMPNN model [7] is a recent protein design model, which is based on mes-
sage passing neural network (MPNN) with specific modifications to improve amino acid sequences
recovery of proteins given their backbone structures. The model incorporates structure features, edge
updates, and an autoregressive approach for decoding the sequences. In Table 1 we compared the
results of original unmodified training of ProteinMPNN to the SC-regulared training (AFDistill model
trained on TM aug 86K dataset). We also varied ProteinMPNN internal parameter, which adds noise
to the input backbone protein structure. As can be seen, SC regularization maintains high recovery
and perplexity rates while improving the diversity of the generated protein sequences. Backbone
noise, which is a part of ProteinMPNN model, can also be seen as a form of regularization, however
while the increase in noise leads to improved sequence diversity it also leads to the decrease in amino
acid recovery rate. SC regularization, on the other hand, promotes diverse generation and maintains
high sequence recovery rates.

PiFold PiFold [12] is another recent protein design model which introduces a new residue featurizer
and stacked PiGNNs (protein inverse folding graph neural networks). The residue featurizer constructs
residue features and introduces learnable virtual atoms to capture information that could be missed
by real atoms. The PiGNN layer learns representations from multi-scale residue interactions by
considering feature dependencies at the node, edge, and global levels. In Table 2 we present the
results of original and SC-regularized PiFold (using different AFDistill models). We note that the
original PiFold evaluation was based on using greedy decoding to generate a sequence. Following
the standard practice (GVP, GraphTrans, ProteinMPNN, etc), we have included also the results based
on sampling (using 100 samples per sequence) to match other works and compute sequence diversity
score. The results show that SC regularization based on AFDistill trained on TM aug 86K results
in a near-identical recovery rate compared to the original model, while notably enhancing sequence
diversity. This indicates an improvement in PiFold’s performance by maintaining recovery rates
while increasing the variety of generated sequences. Also observe a decrease in recovery rates for
sampled generation as compared to greedy decoding across all the models.

4 Conclusion

In this work we introduce AFDistill, a distillation model based on AlphaFold, which for a given
protein sequence estimates its structural consistency (SC: pTM or pLDDT) score. We provide
experimental results to showcase the efficiency and efficacy of the AFDistill model in high-quality
protein sequence design, when used together with many of the current state of the art protein inverse
folding models. Our AFDistill model is fast and accurate enough so that it can be efficiently used for
regularizing structural consistency in protein optimization tasks, maintaining sequence and structural
integrity, while introducing diversity and variability in the generated proteins.

5

Input 
Protein Sequence

Proposed
AFDistill
Model

Logits CE loss

Predicted 
3D structure

pTM, pLDDT

Ground Truth
3D structure

TM, LDDT
Discretizer AlphaFoldClasses

Input 
Protein Sequence

Proposed
AFDistill
Model

Structure Consistency (SC) score
pTM, pLDDT

Training

Inference

Code: github.com/IBM/AFDistill Paper: arxiv.org/abs/2210.03488


