

AlphaFold Distillation for Protein Design

Igor Melnyk, Aurelie Lozano, Payel Das, Vijil Chenthamarakshan IBM Research, Yorktown Heights, NY

Introduction

- Inverse Protein Folding
 - Design protein sequence that folds into a given 3D structure
 - Fundamental challenge in bioengineering and drug discovery
 - 8 of the top 10 best-selling drugs are engineered proteins

Current Approaches

- Traditionally, optimize sequences to achieve specific structures and functions
- Recent deep generative models learn to translate structure into sequence
- However, often lack in producing diverse, functional sequences

AlphaFold

- Forward folding model
- Accurately estimates structure from sequence, provides confidence metrics (pLDDT, pTM)
- However, very slow

Our Work

• Merge inverse with forward folding to provide feedback on generated sequence

- Proposed method: AlphaFold Distll (AFDistill)
 - Fast, end-to-end differentiable
 - Trained on AlphaFold-generated data [sequence --> TM/LDDT score]
 - Use as part of optimization loop in the Inverse Folding Design
 - More generally, can be used in any protein optimization algorithm

AlphaF

Data

- Sourced from AlphaFold Database Release 3 (900K+) and 4 (214M+)
- Created multiple balanced datasets for more representative training

Model

- Adapted ProtBert, a BERT-based Transformer with 420M parameters
- Adjusted ProtBert head to classify protein residue states in 50 discrete bins
- Estimates pTM/pLDDT scores per protein sequence

Results

- Eval shows high accuracy with true vs. predicted scores clustering on the diagonal
- Kernel density plots demonstrate model reliability in predicting protein structures
- Orders of magnitude faster than existing methods

Input Protein Sequence Model Structure Consistency (SC) score pTM, pLDDT

IBM

Research

Inverse Prot

- Overview
 - Use AFDistill as a Structure Consistency (SC) score in inverse protein folding
 - Evaluate protein sequence recovery, diversity, perplexity, and TM-score
 - CATH 4.2 dataset

• GVP

- GVP+SC improves diversity without compromising TM scores
- SC regularization induces diversity by allowing multiple high-score sequence candidates
- Candidate protein sequences with high pTM/pLDDT drive both recovery and diversity

ProteinMPNN

- ProteinMPNN benefits from SC regularization, sustaining high recovery rates.
- SC regularization enhances sequence diversity better than backbone noise alone

PiFold

- PiFold's performance improved by SC regularization without sacrificing recovery rates
- SC regularization introduces significant diversity in generated protein sequences

Sequence metrics		2.K		0.85 0.78 3 86K		0.77 0.81 0.77 0.81		0.74 0.74 0.78 0.78 0.78	0.76 0.79 3.5) DDT 1M		0.75 5.9 7.5)		1.0 Recovery gain Diversity gain pTM/pLDDT TM score GVP (TM 0.79) 0.5 0.0 DT bal 60M			
					Recov	ery			Diversity				Perplexity			
			Pro	oteinMP	NN	Proteinf +S	MPNN C	Prote	einMPNN	Protein +	IMPNN SC	Pr <mark>ote</mark>	inMPNN	Protein +	impnn SC	
Backbo	one No:	ise 0.02	2	47.7		47.5 (-	0.4 <mark>%)</mark>		22. <mark>5</mark>	24.3 (+8.0%)		5.1	5.1 (+	+0.0%)	
Backbe	ackbone Noise 0.2			43.8 39.5		39.9 (+1.0%)			31.3 30.4		+8.2%) +9.9%)	5.8		5.8 (+0.0%)		
Backbo	ckb <mark>one N</mark> oise 0.3			36.3		36.4 (+	+0.0 <mark>%)</mark>		33. <mark>0 37.8</mark> (+1		- <mark>1</mark> 4.6%)		6.2	6.3 (+1.6%)		
		•••					0.614									
	Rec Pern		Rec Per		n –	TM aug Rec	Pern		Pern Rec		Pern	Rec Pern		Rec Perp		
Greedy	7 51.1	4.8	50.9 (-0.4%	5.0 (+4.0	%) (·	51.0 -0.2%) (4.8 (+0.0%)	50.5 (-1.2%)	5.2 (+8.3%)	50.8 (-0.6%)	4.9 (+2.1%)	50.9 (-0.4%)	4.8 (+0.0%)	51.1 (+0.0%)	4.7 (-2.1%)	
Sample	Rec d 42.6	Div 52.4	Rec 42.5	Div 60.7	7 7 2012 (1	Rec 42.8	Div 60.2	Rec 42.4	Div 61.1	Rec 42.3	Div 60.9	Rec 42.5	Div 60.5	Rec 42.9	Div 60.0	
Cod	git	hub	.com	n/IBN	1/AF	Disti	+14.9%) 	(-0.5%)	(+16.6%)	r: arxiv	v.org/	abs/	(+15.5%) (2210.(03488	(+14.5%) }	