

AlphaFold Distillation for Protein Design

Igor Melnyk, Aurelie Lozano, Payel Das, Vijil Chenthamarakshan IBM Research, Yorktown Heights, NY

Introduction

- Inverse Protein Folding
 - Design protein sequence that folds into a given 3D structure
 - Fundamental challenge in bioengineering and drug discovery
 - 8 of the top 10 best-selling drugs are engineered proteins

Current Approaches

- Traditionally, optimize sequences to achieve specific structures and functions
- Recent deep generative models learn to translate structure into sequence
- However, often lack in producing diverse, functional sequences

AlphaFold

- Forward folding model
- Accurately estimates structure from sequence, provides confidence metrics (pLDDT, pTM)
- However, very slow

Our Work

• Merge inverse with forward folding to provide feedback on generated sequence

- Proposed method: AlphaFold Distll (AFDistill)
 - Fast, end-to-end differentiable
 - Trained on AlphaFold-generated data [sequence --> TM/LDDT score]
 - Use as part of optimization loop in the Inverse Folding Design
 - More generally, can be used in any protein optimization algorithm

AlphaF

Data

- Sourced from AlphaFold Database Release 3 (900K+) and 4 (214M+)
- Created multiple balanced datasets for more representative training

Model

- Adapted ProtBert, a BERT-based Transformer with 420M parameters
- Adjusted ProtBert head to classify protein residue states in 50 discrete bins
- Estimates pTM/pLDDT scores per protein sequence

Results

- Eval shows high accuracy with true vs. predicted scores clustering on the diagonal
- Kernel density plots demonstrate model reliability in predicting protein structures
- Orders of magnitude faster than existing methods

Input Protein Sequence Model Structure Consistency (SC) score pTM, pLDDT

IBM

Research

Inverse Prot

- Overview
 - Use AFDistill as a Structure Consistency (SC) score in inverse protein folding
 - Evaluate protein sequence recovery, diversity, perplexity, and TM-score
 - CATH 4.2 dataset

• GVP

- GVP+SC improves diversity without compromising TM scores
- SC regularization induces diversity by allowing multiple high-score sequence candidates
- Candidate protein sequences with high pTM/pLDDT drive both recovery and diversity

ProteinMPNN

- ProteinMPNN benefits from SC regularization, sustaining high recovery rates.
- SC regularization enhances sequence diversity better than backbone noise alone

PiFold

- PiFold's performance improved by SC regularization without sacrificing recovery rates
- SC regularization introduces significant diversity in generated protein sequences

C Sequence metrics	 p. 21	84 0.84		0.85 0.78		0.77 0.81		0.74 0.78 0.79 0.78 0.78		0.76 0.7 3.5) DDT 1M		0.75 5.9 7.5)		0.81 0.74 18.5 17.9)	Diver	- 0.5	Structure metrics
					Re <mark>co</mark>	very Protein	MPNN	IPNN -		Diversit	y ote <mark>inN</mark>	 APNN		Perpl	exity ProteinMPNN		
			_	oteinMP	NN	+S	SC	Prote	einMP	NN 1	+S		Prote	inMPNN		SC	
Backbo Backbo			2	47.7 43.8		47.5 (- 44.0 (-			22. <mark>5</mark> 28.1		24.3 (+ 30.4 (+	8.0%) 8.2%)		5.1 5.3		+0.0%) +1.9%)	
Backbo	Backbone Noise 0.2 Backbone Noise 0.3			39.5		39.9 (+1.0 <mark>%)</mark>		31. <mark>3</mark>		3 <mark>4.4</mark> (+9.		9.9%)		5.8	5.8 (+0.0%)		
Backbo	one No	ise 0.3		36.3		36.4 (-	⊦0.0%)		33. <mark>0</mark>	3	7.8 <mark>(+</mark> 1	4.6%)		6.2	6.3 (-	+1.6%)	
		••• 1					0.61				LDDT	1017					
	Orig Rec		 Re	TM 42K c Per		TM aug Rec	Perp	Rec	synt <mark>h</mark> 11 Pei		LDDT 4 ec	Perp	PLL Rec	DT 1M Perp	PLDD1 Rec	bal 60M Perp	
Greedy		-	50. (- <mark>0.4</mark>	<mark>9</mark> 5.()	51.0	4.8 (+0.0%)	50.5 (-1.2%)	5.	2 50).8	4.9 +2.1%)	50.9 (-0.4%)	4.8 (+0.0%)	51.1 (+0.0%)	4.7 (-2.1%)	
C 1	Rec		Re			Rec	Div	Rec	Di		ec	Div	Rec	Div	Rec 42.0	Div	
Sample	d 42.6	52.4	42. (- <mark>0.2</mark>			42.8 +0.5%) (60. <mark>2</mark> (+14. <mark>9%)</mark>	42.4 (-0.5%)	<mark>61</mark> (+16.		2.3 7%) (-	60.9 +16.2%)	42 <mark>.5</mark> (-0.2%)	60.5 (+15.5%)	42.9 (+0.7%)	60.0 (+14.5%)	
Code	git	:hub	102.	n/IBN	1/AI	Disti	11			ber: a	I	.org/	abs/	' 2210.(03488		