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| Introduction

Inverse Protein Folding

* Design protein sequence that folds into a given 3D structure Training Inference
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* Fast, end-to-end differentiable
* Trained on AlphaFold-generated data [ sequence --> TM/LDDT score ]
Use as part of optimization loop in the Inverse Folding Design
* More generally, can be used in any protein optimization algorithm
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Inverse Protein Folding

* Overview
Use AFDistill as a Structure Consistency (SC) score in inverse protein folding 004 04 s - | o5 oo Diversity o
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* SCregularization induces diversity by allowing multiple high-score sequence
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Backbone Noise 0.02 47.7 47.5 (-0.4%) 22.5 24.3 (+8.0%) 5.1 5.1 (+0.0%)
Backbone Noise 0.1 43.8 44.0 (+0.5%) 28.1 30.4 (+8.2%) 5.3 5.4 (+1.9%)
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* ProteinMPNN benefits from SC regularization, sustaining high recovery rates.
* SCregularization enhances sequence diversity better than backbone noise
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* SC regularization introduces significant diversity in generated protein
sequences

Code: github.com/IBM/AFDistill Paper: arxiv.org/abs/2210.03488



