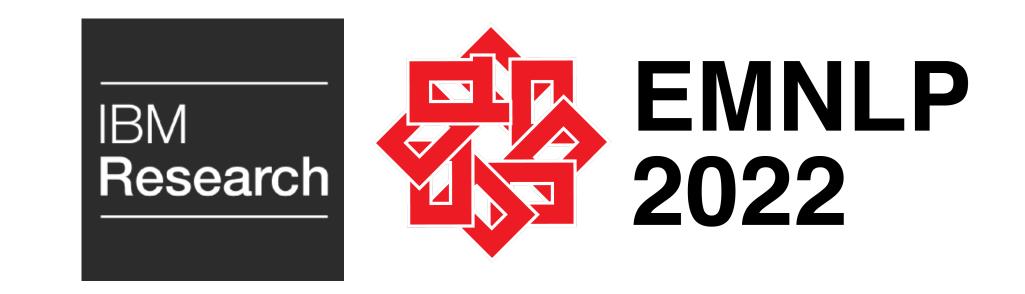


Knowledge Graph Generation From Text

Igor Melnyk, Pierre Dognin, Payel Das IBM Research



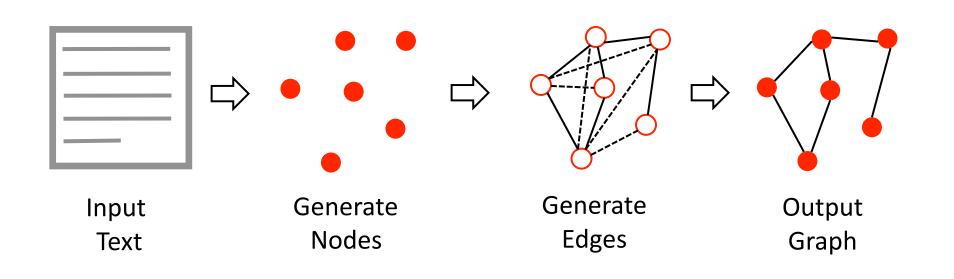
Introduction

- Automatic Knowledge Graph (KG) Construction
 - Convert text corpora into structured and compressed graph representation
 - Used in many downstream applications:
 - Reasoning, decision making, question answering

• Challenges

- Non-unique graph representation
- Complex node and edge structure
- Large output space
- Lack of architectures specialized for graph-structured output
- Limited parallel training data

System Overview



Main Properties

- Use of pretrained language model (PLM) for node extraction
- Efficient partitioning of graph construction in two stages

Experiments

- WEBNLG 2020 small dataset • Text Nodes and Class Edges performs the best
 - GRU-based decoding is a bit less accurate than Class Edges

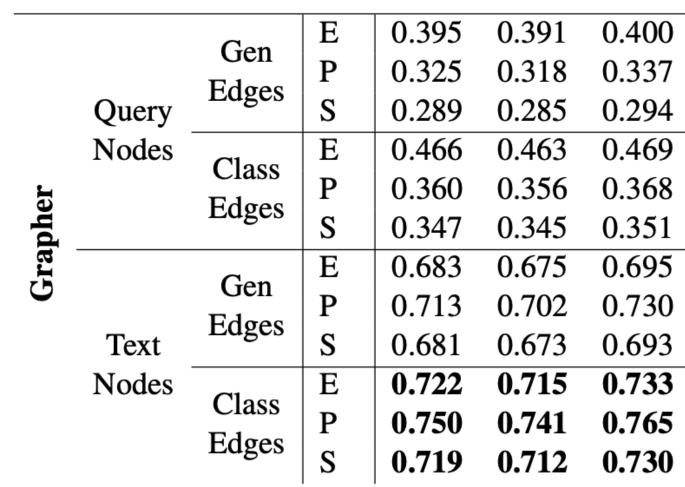
• Query-based node generation is behind

		F1		
	E	0.689	0.689	0.690
Amazon AI	P	0.696	0.696	0.698
	S	0.689 0.696 0.686	0.686	0.687
	E	0.682	0.670	0.701

- Proposed approach Grapher
 - Given input text, split graph generation in two steps
 - Frist, using pretrained language model, generate nodes
 - Second, using obtained node information, generate edges

 Avoids inefficient graph linearization
 Generates each node and edge only once
 Can represent graph entities by any words or set of words
 Entire system is end-to-end trainable

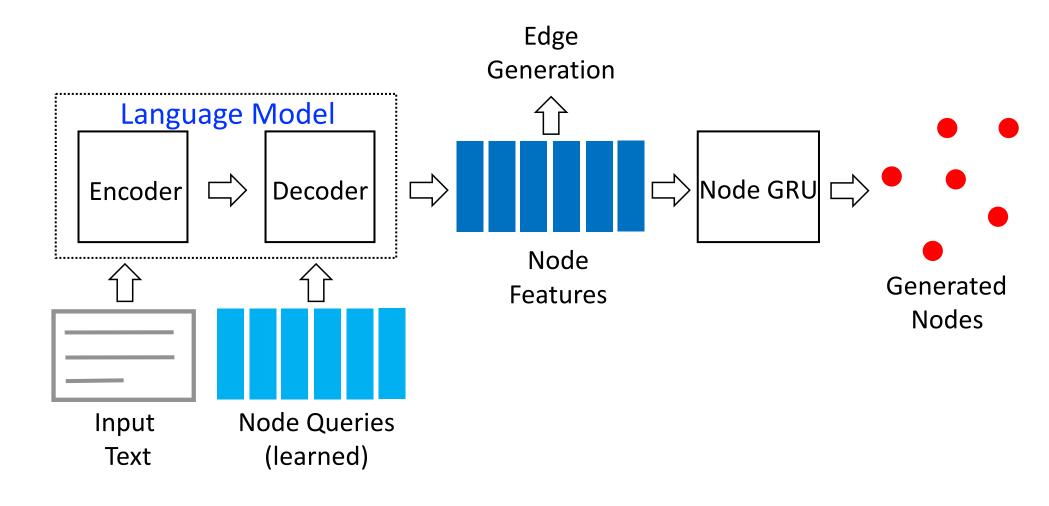
		0.062	0.070	0.701
BT5	P	0.713	0.700	0.736
	S	0.675	0.663	0.695
	E	0.342	0.338	0.349
CycleGT	P	0.360	0.355	0.372
	S	0.309	0.306	0.315
	E	0.158	0.154	0.164
Stanford OIE	P	0.200	0.194	0.211
	S	0.127	0.125	0.130
	E	0.723	0.714	0.738
ReGen	P	0.767	0.755	0.788
	S	0.720	0.713	0.735

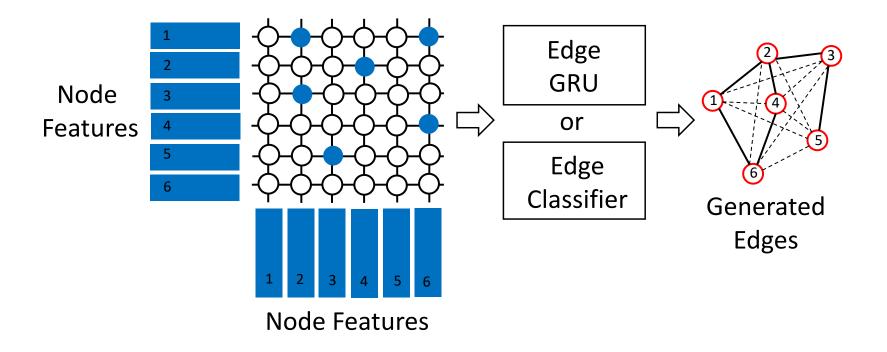


• TEKGEN – large dataset

• GRU-based decoding performs similar or better than classification edge head

Node Generation using Query Nodes





Edge Generation

Edge Generation

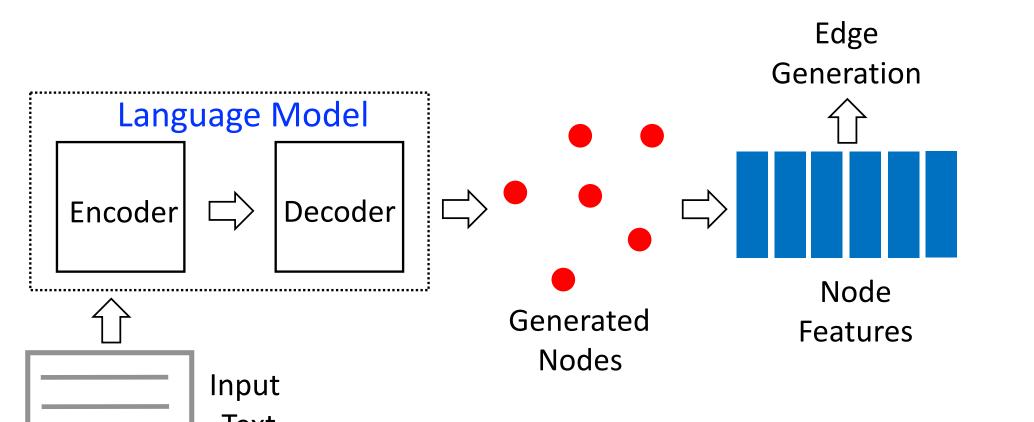
• Given a pair of node features, decide existence of an edge

• First option: GRU-based edge generation

• Query Nodes

- - Decoder receives as input learnable node queries (embedding matrix)
 - Disable causal masking in PLM to attend to all queries
 - Read-off node features directly as decoder output
 - Use GRU head to generate final node output
 - Permutation-invariance of the nodes
 - Target-align nodes using bipartite matching
 - Use cross-entropy as the matching cost

Node Generation using Text Nodes



- Able to construct any edge sequence
- Risk of not matching target edge token sequence exactly
- Second option: Classifier-based edge construction
 - More efficient and accurate if edge set is fixed
 - Can misclassify, if limited coverage of possible edges
- Issue: Imbalanced Edge Distribution
 - Number of actual edges is small and <NO EDGE> is large
 - Makes training harder
 - Two solutions:
 - Use Focal loss instead of Cross Entropy loss
 - Use Sparse Adjacency Matrix, re-balancing the classes

• Using more training data makes GRUbased edge decoder more accurate

• Text Nodes outperforms the query-based system

			М.	F1	Prec.	Rec.
ReGen		E	0.623	0.610	0.647	
Grapher	Query Nodes	Gen Edges	E	0.386	0.361	0.430
			P	0.438	0.405	0.496
			S	0.386	0.361	0.430
		Class Edges	E	0.361	0.338	0.401
			P	0.408	0.378	0.463
			S	0.360	0.337	0.401
	Text Nodes	Gen Edges	E	0.707	0.693	0.730
			P	0.741	0.723	0.771
			S	0.706	0.692	0.729
		Class Edges	E	0.700	0.686	0.722
			P	0.735	0.717	0.764
			S	0.700	0.685	0.721
			7.6	3		

• NYT – small dataset

• Text nodes and generation edges perform the best

• More training data enables GRU edge decoder becomes more accurate

Summary of Architectural Choices

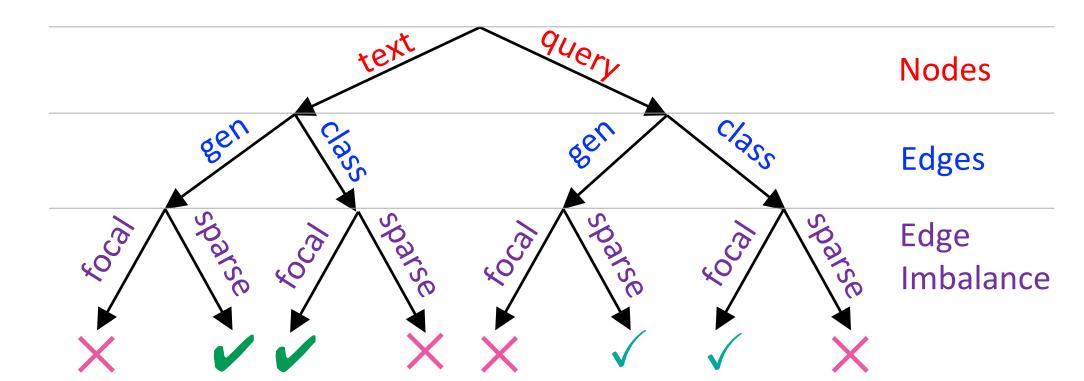
Grapher

Text

• Text Nodes

• Fine-tune PLM to translate text to a sequence of nodes • <PAD> NODE1 <NODE_SEP> NODE2 <NODE_SEP> NODE3

- Use <NODE_SEP> to delineate generated node boundaries and get features
- Extracted node features are sent to Edge construction model



• Text Nodes outperforms the query-based system

			М.	F1	Prec.	Rec.
T5 + Linearized Graph		E	0.832	0.831	0.834	
		P	0.834	0.832	0.837	
		S	0.824	0.822	0.826	
Grapher	Text Nodes	Gen Edges	E	0.918	0.917	0.920
			P	0.919	0.918	0.921
			S	0.913	0.911	0.914
		Class Edges	E	0.870	0.867	0.872
			P	0.871	0.869	0.874
			S	0.860	0.858	0.862



Paper: arxiv.org/ abs/2211.10511

