
Knowledge Graph Generation From Text

Introduction System Overview

Igor Melnyk, Pierre Dognin, Payel Das

IBM Research

• Automatic Knowledge Graph (KG) Construction
• Convert text corpora into structured and compressed graph

representation
• Used in many downstream applications:

• Reasoning, decision making, question answering

• Challenges
• Non-unique graph representation
• Complex node and edge structure
• Large output space
• Lack of architectures specialized for graph-structured output
• Limited parallel training data

• Proposed approach - Grapher
• Given input text, split graph generation in two steps
• Frist, using pretrained language model, generate nodes
• Second, using obtained node information, generate edges

• Main Properties
• Use of pretrained language model (PLM) for node

extraction

• Efficient partitioning of graph construction in two stages

• Avoids inefficient graph linearization

• Generates each node and edge only once

• Can represent graph entities by any words or set of words

• Entire system is end-to-end trainable

Node Generation using Text
Nodes

• Text Nodes
• Fine-tune PLM to translate text to a sequence of nodes

• <PAD> NODE1 <NODE_SEP> NODE2 <NODE_SEP> NODE3 </S>

• Use <NODE_SEP> to delineate generated node boundaries
and get features

• Extracted node features are sent to Edge construction
model

Node Generation using Query
Nodes

• Query Nodes
• Decoder receives as input learnable node queries

(embedding matrix)

• Disable causal masking in PLM to attend to all queries

• Read-off node features directly as decoder output

• Use GRU head to generate final node output

• Permutation-invariance of the nodes
• Target-align nodes using bipartite matching
• Use cross-entropy as the matching cost

Edge Generation

• Edge Generation
• Given a pair of node features, decide existence of an edge

• First option: GRU-based edge generation
• Able to construct any edge sequence
• Risk of not matching target edge token sequence exactly

• Second option: Classifier-based edge construction
• More efficient and accurate if edge set is fixed
• Can misclassify, if limited coverage of possible edges

• Issue: Imbalanced Edge Distribution
• Number of actual edges is small and <NO_EDGE> is

large
• Makes training harder
• Two solutions:

• Use Focal loss instead of Cross Entropy loss
• Use Sparse Adjacency Matrix, re-balancing the

classes

Summary of Architectural
Choices

Experiments
• WEBNLG 2020 – small dataset

• Text Nodes and Class Edges performs the
best

• GRU-based decoding is a bit less accurate
than Class Edges

• Query-based node generation is behind

• TEKGEN – large dataset
• GRU-based decoding performs similar or

better than classification edge head

• Using more training data makes GRU-
based edge decoder more accurate

• Text Nodes outperforms the query-based
system

Generate
Edges

Generate
Nodes

Output
Graph

Input
Text

Input
Text

Language Model

Decoder

Node Queries
(learned)

Node
Features

Node GRUEncoder

Generated
Nodes

Edge
Generation

Grapher

Nodes

Edges

Edge
Imbalance

text
query

gen

class gen
class

fo
ca
l sparse fo

ca
l sparse fo

ca
l sparse

sparsefo
ca
l

<latexit sha1_base64="w0oZwnfiivWETlpkF3XC07T/vcQ=">AAACbnicbVDbattAEF0raZs4beM00JcSImoCfjKSIbSPoYWmjwnUScAyZrQa24v3InZHbozQL/Rr8tr8R/6in9C1rYc67sDC4ZyZnTknzaVwFEVPjWBn98XLV3v7zYPXb94eto7e3ThTWI59bqSxdyk4lEJjnwRJvMstgkol3qazr0v9do7WCaN/0CLHoYKJFmPBgTw1anUSwnta/VN+MxYdXVpEXZXJFGG+4FPkMwV2Vo1a7agbrSrcBnEN2qyuq9FRo5tkhhcKNXEJzg3iKKdhCZYEl1g1k8JhDnwGExx4qEGhG5arU6rwzDNZODbWP03hiv13ogTl3EKlvlMBTd1zbUn+TxsUNP48LIXOC0LN14vGhQzJhMt8wkxY5CQXHgC3wt8a8ilY4ORT3NiSi+Vpmz6yuchd7eR+baWZaPzJjVKgs61UyyQTelKe96rqzCccP89zG9z0uvF5N7rutS++1FnvsQ/sI+uwmH1iF+w7u2J9xtkv9sB+s8fGn+B9cBKcrluDRj1zzDYq6PwFeaDBRg==</latexit>

4
<latexit sha1_base64="ph5LqoMlQ2FD5/kcQOI5U2UmKBs=">AAACjXicbVHbattAEF2rt8S95NLHvIiaQJ+M5GLSh1JC85DSp7TUScAyYbQa24v3InZHbsyiD+jX9LX9lP5N17agVdKBhcOZMzszZ/JSCkdJ8rsTPXj46PGTnd3u02fPX+ztHxxeOlNZjiNupLHXOTiUQuOIBEm8Li2CyiVe5Yuzdf5qidYJo7/SqsSJgpkWU8GBAnWz38sIb2nzj/9U6ZnEc4uoa5/xOfKFAruogyrpJ5uI74O0AT3WxMXNQedLVhheKdTEJTg3TpOSJh4sCS6x7maVwxL4AmY4DlCDQjfxmynq+DgwRTw1NjxN8Yb9t8KDcm6l8qBUQHN3N7cm/5cbVzR9O/FClxWh5ttG00rGZOK1NXEhLHKSqwCAWxFmjfkcLHAKBra6lGI9WnuPYilK12xyu12lm2n8xo1SoAufzRGWq7+u+qwQeuaHg7o+bgu5Nc61NG+CJlwhvev5fXA56KfDfvJ50Dv90Nxjhx2xV+w1S9kJO2Uf2QUbMc6+sx/sJ/sV7UXD6F30fiuNOk3NS9aK6PwPJ6zM9Q==</latexit>X <latexit sha1_base64="ph5LqoMlQ2FD5/kcQOI5U2UmKBs=">AAACjXicbVHbattAEF2rt8S95NLHvIiaQJ+M5GLSh1JC85DSp7TUScAyYbQa24v3InZHbsyiD+jX9LX9lP5N17agVdKBhcOZMzszZ/JSCkdJ8rsTPXj46PGTnd3u02fPX+ztHxxeOlNZjiNupLHXOTiUQuOIBEm8Li2CyiVe5Yuzdf5qidYJo7/SqsSJgpkWU8GBAnWz38sIb2nzj/9U6ZnEc4uoa5/xOfKFAruogyrpJ5uI74O0AT3WxMXNQedLVhheKdTEJTg3TpOSJh4sCS6x7maVwxL4AmY4DlCDQjfxmynq+DgwRTw1NjxN8Yb9t8KDcm6l8qBUQHN3N7cm/5cbVzR9O/FClxWh5ttG00rGZOK1NXEhLHKSqwCAWxFmjfkcLHAKBra6lGI9WnuPYilK12xyu12lm2n8xo1SoAufzRGWq7+u+qwQeuaHg7o+bgu5Nc61NG+CJlwhvev5fXA56KfDfvJ50Dv90Nxjhx2xV+w1S9kJO2Uf2QUbMc6+sx/sJ/sV7UXD6F30fiuNOk3NS9aK6PwPJ6zM9Q==</latexit>X <latexit sha1_base64="HcuWqBjk4G1CB2zlOIfdcxljOKg=">AAACi3icbVFNT9tAEN24tEBaSijHXgwRUk+RHYRaoR5QEVKPgJqAFEfRej1JVtkPa3ecEq187q/hCr+l/6Ybx1UbYKSVnt682Zl5k+aCW4yi343g1cbrN5tb282373be77b2PvStLgyDHtNCm9uUWhBcQQ85CrjNDVCZCrhJZ+fL/M0cjOVa/cBFDkNJJ4qPOaPoqVHrIEG4w+of1+daAF5DVrqEGW2tpGZWjlrtqBNVET4HcQ3apI7L0V7jOsk0KyQoZIJaO4ijHIeOGuRMQNlMCgs5ZTM6gYGHikqwQ1fNUIZHnsnCsTb+KQwr9v8KR6W1C5l6paQ4tU9zS/Kl3KDA8Zeh4yovEBRbNRoXIkQdLo0JM26AoVh4QJnhftaQTamhDL19a11yvhxtfY9sznNbb3K3WqWZKPjJtJRUZS6ZAp0v2BTYrHLVJRlXE3fSLcujdeE/5/9qjr3GXyF+6vlz0O924pNOdNVtn32r77FFPpJD8onE5DM5I9/JJekRRn6Re/JAHoOd4Dg4Db6upEGjrtknaxFc/AGHUsxF</latexit>

5
<latexit sha1_base64="HcuWqBjk4G1CB2zlOIfdcxljOKg=">AAACi3icbVFNT9tAEN24tEBaSijHXgwRUk+RHYRaoR5QEVKPgJqAFEfRej1JVtkPa3ecEq187q/hCr+l/6Ybx1UbYKSVnt682Zl5k+aCW4yi343g1cbrN5tb282373be77b2PvStLgyDHtNCm9uUWhBcQQ85CrjNDVCZCrhJZ+fL/M0cjOVa/cBFDkNJJ4qPOaPoqVHrIEG4w+of1+daAF5DVrqEGW2tpGZWjlrtqBNVET4HcQ3apI7L0V7jOsk0KyQoZIJaO4ijHIeOGuRMQNlMCgs5ZTM6gYGHikqwQ1fNUIZHnsnCsTb+KQwr9v8KR6W1C5l6paQ4tU9zS/Kl3KDA8Zeh4yovEBRbNRoXIkQdLo0JM26AoVh4QJnhftaQTamhDL19a11yvhxtfY9sznNbb3K3WqWZKPjJtJRUZS6ZAp0v2BTYrHLVJRlXE3fSLcujdeE/5/9qjr3GXyF+6vlz0O924pNOdNVtn32r77FFPpJD8onE5DM5I9/JJekRRn6Re/JAHoOd4Dg4Db6upEGjrtknaxFc/AGHUsxF</latexit>

5
<latexit sha1_base64="HcuWqBjk4G1CB2zlOIfdcxljOKg=">AAACi3icbVFNT9tAEN24tEBaSijHXgwRUk+RHYRaoR5QEVKPgJqAFEfRej1JVtkPa3ecEq187q/hCr+l/6Ybx1UbYKSVnt682Zl5k+aCW4yi343g1cbrN5tb282373be77b2PvStLgyDHtNCm9uUWhBcQQ85CrjNDVCZCrhJZ+fL/M0cjOVa/cBFDkNJJ4qPOaPoqVHrIEG4w+of1+daAF5DVrqEGW2tpGZWjlrtqBNVET4HcQ3apI7L0V7jOsk0KyQoZIJaO4ijHIeOGuRMQNlMCgs5ZTM6gYGHikqwQ1fNUIZHnsnCsTb+KQwr9v8KR6W1C5l6paQ4tU9zS/Kl3KDA8Zeh4yovEBRbNRoXIkQdLo0JM26AoVh4QJnhftaQTamhDL19a11yvhxtfY9sznNbb3K3WqWZKPjJtJRUZS6ZAp0v2BTYrHLVJRlXE3fSLcujdeE/5/9qjr3GXyF+6vlz0O924pNOdNVtn32r77FFPpJD8onE5DM5I9/JJekRRn6Re/JAHoOd4Dg4Db6upEGjrtknaxFc/AGHUsxF</latexit>

5
<latexit sha1_base64="HcuWqBjk4G1CB2zlOIfdcxljOKg=">AAACi3icbVFNT9tAEN24tEBaSijHXgwRUk+RHYRaoR5QEVKPgJqAFEfRej1JVtkPa3ecEq187q/hCr+l/6Ybx1UbYKSVnt682Zl5k+aCW4yi343g1cbrN5tb282373be77b2PvStLgyDHtNCm9uUWhBcQQ85CrjNDVCZCrhJZ+fL/M0cjOVa/cBFDkNJJ4qPOaPoqVHrIEG4w+of1+daAF5DVrqEGW2tpGZWjlrtqBNVET4HcQ3apI7L0V7jOsk0KyQoZIJaO4ijHIeOGuRMQNlMCgs5ZTM6gYGHikqwQ1fNUIZHnsnCsTb+KQwr9v8KR6W1C5l6paQ4tU9zS/Kl3KDA8Zeh4yovEBRbNRoXIkQdLo0JM26AoVh4QJnhftaQTamhDL19a11yvhxtfY9sznNbb3K3WqWZKPjJtJRUZS6ZAp0v2BTYrHLVJRlXE3fSLcujdeE/5/9qjr3GXyF+6vlz0O924pNOdNVtn32r77FFPpJD8onE5DM5I9/JJekRRn6Re/JAHoOd4Dg4Db6upEGjrtknaxFc/AGHUsxF</latexit>

5
<latexit sha1_base64="w0oZwnfiivWETlpkF3XC07T/vcQ=">AAACbnicbVDbattAEF0raZs4beM00JcSImoCfjKSIbSPoYWmjwnUScAyZrQa24v3InZHbozQL/Rr8tr8R/6in9C1rYc67sDC4ZyZnTknzaVwFEVPjWBn98XLV3v7zYPXb94eto7e3ThTWI59bqSxdyk4lEJjnwRJvMstgkol3qazr0v9do7WCaN/0CLHoYKJFmPBgTw1anUSwnta/VN+MxYdXVpEXZXJFGG+4FPkMwV2Vo1a7agbrSrcBnEN2qyuq9FRo5tkhhcKNXEJzg3iKKdhCZYEl1g1k8JhDnwGExx4qEGhG5arU6rwzDNZODbWP03hiv13ogTl3EKlvlMBTd1zbUn+TxsUNP48LIXOC0LN14vGhQzJhMt8wkxY5CQXHgC3wt8a8ilY4ORT3NiSi+Vpmz6yuchd7eR+baWZaPzJjVKgs61UyyQTelKe96rqzCccP89zG9z0uvF5N7rutS++1FnvsQ/sI+uwmH1iF+w7u2J9xtkv9sB+s8fGn+B9cBKcrluDRj1zzDYq6PwFeaDBRg==</latexit>

4

Input
Text

Language Model

Decoder

Node
Features

Encoder

Generated
Nodes

Edge
Generation

Node Features

Edge
GRUNode

Features

Generated
Edges

Edge
Classifier

or

1 2 3 4 5 6

1

2

3

4

5

6

5

1

2 3

4

6

• NYT – small dataset
• Text nodes and generation edges perform

the best

• More training data enables GRU edge
decoder becomes more accurate

• Text Nodes outperforms the query-based
system

Code: github.com/
IBM/Grapher

Paper: arxiv.org/
abs/2211.10511

