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• Automatic Knowledge Graph (KG) Construction
• Convert text corpora into structured and compressed graph 

representation
• Used in many downstream applications:

• Reasoning, decision making, question answering

• Challenges
• Non-unique graph representation
• Complex node and edge structure
• Large output space
• Lack of architectures specialized for graph-structured output
• Limited parallel training data

• Proposed approach - Grapher
• Given input text, split graph generation in two steps
• Frist, using pretrained language model, generate nodes
• Second, using obtained node information, generate edges

• Main Properties
• Use of pretrained language model (PLM) for node 

extraction

• Efficient partitioning of graph construction in two stages

• Avoids inefficient graph linearization

• Generates each node and edge only once

• Can represent graph entities by any words or set of words

• Entire system is end-to-end trainable

Node Generation using Text 
Nodes

• Text Nodes
• Fine-tune PLM to translate text to a sequence of nodes

• <PAD> NODE1 <NODE_SEP> NODE2 <NODE_SEP> NODE3 </S>

• Use <NODE_SEP> to delineate generated node boundaries 
and get features

• Extracted node features are sent to Edge construction 
model

Node Generation using Query 
Nodes

• Query Nodes
• Decoder receives as input learnable node queries 

(embedding matrix)

• Disable causal masking in PLM to attend to all queries

• Read-off node features directly as decoder output

• Use GRU head to generate final node output

• Permutation-invariance of the nodes
• Target-align nodes using bipartite matching
• Use cross-entropy as the matching cost

Edge Generation

• Edge Generation
• Given a pair of node features, decide existence of an edge

• First option: GRU-based edge generation
• Able to construct any edge sequence
• Risk of not matching target edge token sequence exactly

• Second option: Classifier-based edge construction
• More efficient and accurate if edge set is fixed
• Can misclassify, if limited coverage of possible edges

• Issue: Imbalanced Edge Distribution
• Number of actual edges is small and <NO_EDGE> is 

large
• Makes training harder
• Two solutions:

• Use Focal loss instead of Cross Entropy loss
• Use Sparse Adjacency Matrix, re-balancing the 

classes 

Summary of Architectural
Choices

Experiments
• WEBNLG 2020 – small dataset

• Text Nodes and Class Edges performs the 
best

• GRU-based decoding is a bit less accurate 
than Class Edges

• Query-based node generation is behind

• TEKGEN – large dataset
• GRU-based decoding performs similar or 

better than classification edge head

• Using more training data makes GRU-
based edge decoder more accurate

• Text Nodes outperforms the query-based 
system
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• NYT – small dataset
• Text nodes and generation edges perform 

the best 

• More training data enables GRU edge 
decoder becomes more accurate 

• Text Nodes outperforms the query-based 
system

Code: github.com/
IBM/Grapher

Paper: arxiv.org/
abs/2211.10511


