
Benchmarking deep generative models for 
diverse antibody sequence design

Introduction

• Antibody design plays a key role in research, diagnostics and therapeutics
• Designing functional sequences typically has combinatorial complexity
• Need to impose sequence and structural constraints

• Antigen binding specificity largely determined by CDR
• Among CDRs, CDR3 contributes most sequence and length diversity
• Sampling diverse CDR3s is the main focus of many antibody design 

methods

• We benchmark three recent deep generative models:
• AR – autoregressive approach uses causal dilated convolutions for input 

prefix sequence to generate CDR3 subsequence
• GVP – encoder-decoder GNN that represents input structure information 

that is autoregressively decoded into protein sequence
• Fold2Seq – encoder-decoder Transformer that embeds fuzzy input fold 

information in joint  sequence-fold space which is then decoded into 
protein sequence

Results

System Overview
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Figure 1: (a) The structure of T4 lysozyme (PDB ID 107L). The secondary structures are colored as: helices in red, beta
sheets in yellow, loops in green and bend/turn in blue. (b) The structure is rescaled to fit the 40Å ⇥ 40Å ⇥ 40Å cubic box.
(c) The box is discretized into voxels. (d) Features of each voxel are obtained from the structure content of the voxel.

fulness of learning joint embedding for single modal classi-
fication (Ngiam et al., 2011; Wang et al., 2018a; Toutanova
et al., 2015). Moreover, Chen et al. (2018) used joint embed-
ding learning for text to shape generation. Joint sequence–
label embedding is also explored for or applied to molecular
prediction/generation (Cao & Shen, 2021; Das et al., 2018).

3. Methods

3.1. Background

A protein consists of a linear chain of amino acids (residues)
that defines its 1D sequence. Chemical composition and
interactions with neighboring residues drive the folding
of a sequence into different secondary structure elements
or SSEs (helix, beta-sheet, loop, etc., see Fig. 1(a)), that
eventually forms a complete native 3D structure. A protein

fold captures the structural consensus of the 3D topology
and the composition of those secondary structure elements.

3.2. Fold Representation through 3D voxels of the SSE

density

In de novo protein design that we target, no backbone struc-
ture is assumed. Instead, a topological “blueprint” (consis-
tent with the desired fold) is given. And initial backbone
structures can be generated accordingly using fragment as-
semblies (Huang et al., 2016). In this study we focus on gen-
erating fold representations once the structures are available
and additionally explore the challenges from such “blueprint”
input structures through three real-world challenges.

We hereby describe how we represent the 3D structure to ex-
plicitly capture the fold information, as illustrated in Fig. 1.
The position (3D coordinates) of each residue is represented
by its ↵-carbon. For a given protein of length N , we first
translate the structure to match its center of geometry (↵-
carbon) with the origin of the coordinate system. We then
rotate the protein around the origin to let the first residue be
on the negative side of z-axis (principal component-based
orienting was also explored as in Training and Decoding

Strategy). We denote the resulting residue coordinates
as c1, c2, ..., cN . The secondary structure label to each

residue is assigned based on their SSE assignment (Kabsch
& Sander, 1983) in Protein Data Bank (Berman et al., 2000).
We consider 4 types of secondary structure labels: helix,
beta strand, loop and bend/turn. In order to consider the
distribution of different secondary structure labels in the 3D
space, we discretize the 3D space into voxels. Due to the
scale-free definition of a protein fold, we rescale the original
structure, so that it fits into a fixed-size cubic box. Based
on the distribution of sizes of single-chain, single-domain
proteins in the CATH database (Sillitoe et al., 2019), we
choose a 40Å ⇥ 40Å ⇥ 40Å box with each voxel of size
2Å ⇥ 2Å ⇥ 2Å. We denote the scaling ratio as r 2 R3. For
voxel i, we denote the coordinates of its center as vi. We
assume that the contribution of residues j to voxel i follows
a Gaussian form:

yij = exp(� ||cj � r � vi||22
�2

) · tj , (1)

where tj 2 {0, 1}4 is the one-hot encoding of the secondary
structure label of amino acid j. The standard deviation is
chosen to be 2Å. We sum up all residues together to obtain
the final features of the voxel i: yi =

PN
j=1 yij . The fold

representation y 2 R20⇥20⇥20⇥4 is the 4D tensor of yi

over all 20⇥ 20⇥ 20 voxels. This fold representation using
3D SSE densities better captures scale-free SSE topologies
that define folds, while removing fold-irrelevant structure
details. It results in sequence generation that explores the
sequence space available to a specific fold more widely (as
shown in experiments).

3.3. Fold2Seq with Joint Sequence–Fold Embedding

Model Architecture. In the training stage, our model con-
sists of three major components: a sequence encoder: hs(·),
a fold encoder: hf (·) and a sequence decoder: p(x|h(·)), as
shown in Fig. 2 (Left).

(i) Sequence Encoder/Decoder. Both sequence encoder
and decoder are implemented using the vanilla transformer
model and a vanilla sequence embedding module (learnable
lookup table + sinusoidal positional encoding), as described
in Vaswani et al. (2017). All training sequences are padded
to the maximum length Ns of 200, as 77% of single-domain
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Table 1: Sequence recovery rate (SRR) and NLL from the autoregressive sequence model [14] trained
on natural llama nanobody repertoire for the sequences generated by the comparison methods and the
sequences from the natural llama library, synthetic library, and next-generation sequencing library.

Model Seq Recovery Rate (%) NLL
Fold2Seq 30.711 2.572
GVP 40.131 2.987
AR 48.865 0.375
Natural – 0.371
Synthetic – 4.912
NGS – 5.102

Sequence Design The sequence and structure corresponding to the Chain A of pdb id 3K3Q were
used as inputs for this study. It is worth noting that this structure is included in the training of both
GVP and Fold2Seq model, whereas a maximum of 58.94% sequence identity was found to be present
between the input sequence and the AR training set.

We compare the full sequences as well as the CDRs across the generated ensembles. For this
purpose, we extracted the CDRs from the generated sequences using the IMGT numbering scheme as
returned by ANARCI software [6]. For the extracted CDRs, we estimate the percentage of unique
sequences (uniqueness). Sequences that contain glycosylation sites, asparagine deamination motifs,
or sulfur-containing amino acids (cysteine and methionine) were removed. For the AR model, we
optionally considered an extra filter to exclude sequences that do not end with the final beta-strand
of the nanobody template as in [14]. We denote the approach with final beta-strand filtering by AR
filtered, while we call AR unfiltered the version without final beta-strand filtering.

Evaluation Metrics We define the set of the generated sequences (structures) conditioned on
sequence/structure j as Gj . In structure-based design, Sequence Recovery rate is defined as (SRR)
for yj as SRRstructure(j) = 1

|Gj |
P

g2Gj
SIM(xg, xj). A global alignment scheme and BLAST62

matrix, with a gap opening penalty of -10 and gap extending penalty of -1, were used for estimating
pairwise sequence identity (SIM) and alignment score. Negative log likelihood (NLL) was estimated
by using the autoregressive (AR) generative model trained on 1.2 million natural llama nanobody
sequences [14], as following: NLL = �

PK
k=1 log(p(xk|X<k)), which is sum of the cross-entropy

between the true residue at each position and the predicted distribution over possible residues,
conditioned on the preceding characters. Structural recovery of the three sequence design models
by predicting the 3D structure of the top 100 generated sequences using pretrained models from
Alphafold21.

4 Results

Table 2: Uniqueness and novelty of the CDR3, CDR2, and CDR1 regions of the sequences generated
by Fold2Seq, GVP, AR without final beta-stand filtering (AR unfiltered), AR with final beta-strand
filtering (AR filtered), and the sequences from the natural llama library. Note that the AR approach
has been trained to generate CDR3 only, given the preceding portion of a ground truth sequence.

Fold2Seq GVP AR unfiltered AR filtered Natural Llama

CDR3 Uniqueness 100 88.33 87.57 13.85 100
Novelty 43.36 52.71 11.92 8.97 52.64

CDR2 Uniqueness 100 9.15 – – 100
Novelty 58.70 9.15 – – 83.83

CDR1 Uniqueness 92.49 56.20 – – 100
Novelty 60.75 51.99 – – 83.37

Table 1 reports the average sequence recovery rate and average negative log likelihood from the trained
autoregressive model in [14], estimated using 10k generated sequences. The autoregressive sequence
model provides highest sequence recovery rate, followed by GVP and Fold2Seq. Both methods yield

1https://github.com/kalininalab/alphafold_non_docker
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• Natural – natural llama library
• Synthetic – synthetic library
• NGS – next-generation sequencing library
• All methods have SRR > 30%, implying fold consistency
• GVP is more accurate than Fold2Seq at recovery, while Fold2Seq has 

lower NLL, indicative of functional fitness 
• AR has highest recovery rate

• We used Chain A PDB ID 3k3Q (llama nanobody) as input to all three 
methods (AR, GVP, Fold2Seq)

• For GVP and Fold2Seq, the generated sequence is analyzed by ANARCI 
to extract CDR3 

• For AR, we considered extra filter to exclude sequences not ending with 
beta-strand of nanobody template

• Generated CDR3s are then analyzed for different properties

Sequence Recovery and NLL of generated CDRs 

Uniqueness and novelty of CDRs

• AR filtered – filtering based on final beta-strand
• AR unfiltered – no filtering applied
• Fold2Seq outperforms AR and GVP in terms of uniqueness 
• GVP generates more novel CDR3s, while Fold2Seq is better at CDR1&2

Kernel Density Estimate for pairwise similarity

• E.g., f2s-f2s – self-similarity, f2s-nat – similarity to natural sequences
• Fold2Seq sequences are more diverse 
• GVP generates sequences which are similar to each other

Density plot for isoelectric point and CDR3 length

• Black dot – ground truth CDR3
• Fold2Seq produces significant coverage of the natural sequence
• GVP generates sequences close to the input PDB ID (limited diversity)
• AR tends to generate short sequences

Sequence identity vs structure similarity

• GVP sequences exhibit higher TM-score than Fold2Seq 
• Fold2Seq shows greater sequence diversity with structural consistency
• AR shows high sequences identity and TM score since only small CDR 

part is generated, the rest is copied


