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Motivation

* Metrics assess socio-technical risks of LLMs such toxicity, factuality
and so on (high value of metrics correspond to low risk)

» A risk averse user prefers models that not only perform well on average
but most importantly do not exhibit risky tail profiles

* Mean Win Rate does not take into account the risk profile
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(a) First order evaluation (FSD): LLM comparison based on Quantile of
metrics (b) Second order evaluation (SSD): LLM comparison based on
Tvar (Tail Value at Risk/Integrated quantiles). Tvar teases apart Risky
models. (c) Validation of automatic metrics with FSD and SSD w.r.t to
chatGPT score and Mean Win Rates.

Stochastic Orders: Comparing Distributions

First Order Stochastic Dominance
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Second Order Stochastic Dominance
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X, Y are real-valued random variables & use the right-continuous cumulative distribution
(CDF) as a performance function. F)({l), F)({Z) are the first and second quantile functions

Relaxations Based on Violation Ratios

| | | 1 | [ | [
40 °
% 0.8
"L‘é 30 | Bos
.=
c:ys 20 [ §0.4 B
10 £02]
0 0
0O 02 04 06 08 1 0O 02 04 06 08 1
p p
(a) e- FSD (first order): U _?SD Vv (b) e-SSD (second order): X _>§SD Y
I m(-1 —1)(£))2
X = Y (Fy, Fy) ly (70— B J0).
— — 8W x> 1L'y) — S 3
e—FSD ’ W3(Fy, Fy)
S ) ~2)( )2
X » Y (Fy, Fy) l (Y0~ A i
~— — 81 x> L'y) — S E
£—SSD C dip(Fx, Fy)

For a confidence level a, test using a CLT and Bootstrapping:
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Relative Testing:

Given pairwise violation ratios of N models, compute a one
versus all violation ratio for each model (OVR) and compare
OVRs of each pair of models. This test does not need a
threshold.

From Pairwise Testing to getting a Rank: Use the Borda
Algorithm to obtain a rank from pairwise testings

Metrics Aggregation via Portfolio:

Combine /N metrics by taking the geometric mean of their
CDFS

N N
R\X) =exp| ) AlogFy, (m(AX))) | = HF]f;i(mi(A(X)))

Apply stochastic dominance to resulting portfolio Aggregation

Test Case: Mix Instruct Dataset

Open  koala alpaca llama flan-t5 stablelm Vicuna Dolly Moss ChatGLM mpt-7b mpt-7b

assistant 7b v2) 6b instruct
Mean Win Rates
RAMWR @ M) 1 6 2 8 5 7 3 10 9 4 11 12
MWR @ P 1 5 2 7 6 8 3 9 10 4 11 12
Relative FSD
RAR-FSD @ M) 1 6 2 5 8 11 4 10 7 3 9 12
R-FSD @ P 1 6 2 5 11 10 4 8 7 3 9 12
R-FSD @ChatGPT 1 7 3 4 12 11 2 8 5 6 9 10
Relative SSD
RAR-SSD @ M) 1 7 2 5 12 10 4 9 6 3 8 11
R-SSD @ P 1 6 3 5 12 11 4 7 8 2 9 10
R-SSD @ChatGPT 1 8 3 4 11 12 2 7 5 6 9 10
Mean-Risk Models
RA(ux —I'x) @M 1 7 2 5 12 11 4 9 6 3 8 10
RA(ux —rx) @P 1 6 3 5 12 11 4 7 8 2 9 10

The table shows ranking of different LLMs based on instruction following
evaluation metrics obtained using our framework. We observe our method
helps a user do a risk based assessment while choosing models as SSD
based comparison aligns with Mean Risk Models

Name Risk Measure a— consistency with SSD
Standard deviation ox = E(X — px)? not consistent

Absolute semi deviation ox =E(ux — X)+ 1— consistent

Negative Tail Value at Risk ~TVARx (p) = -7 '@ 1— consistent for all p € (0, 1]
Mean absolute deviation from a quantile | hx(p) = p, — E& 1— consistent for all p € (0, 1]
Gini Tail Tx =2 [ (uxp— F$? (p))dp | 1— consistent

Risk Models and their a-consistency with SSD

Mean Risk Models on Portfolio
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